SYLLABUS

Level of study	Master's Course (II SUM)		
Course title in Ukraine	Статистична фізика		
Course title in English	Statistical Physics		
Course code		ECTS credits	5
Lecturer(s)	Prof. dr hab. Ryszard J. Radwański sfradwan@up.krakow.pl, rjradwanski@gmail.com Dr Renata Bujakiewicz-Korońska, <u>rbk@up.krakow.pl</u>		

Course objectives	This course aims to get students acquainted with knowledge of laws, issues and concepts of
(learning	statistical physics as consistent mathematical theory for description of great-number particle
outcomes)	systems and of phenomological thermodynamical laws.

Knowledge	Knowledge of algebra, mathematical analysis and basic thermodynamics.
Skills	Ability to differentiate, integrate, solve ordinary and partial differential equations.
Courses completed	

Learning effects:

	Learning effects of the course	Relation of the learning effects to the specialization
Knowledge	W01 A student knows Classical Thermodynamics and description of Classical gases	
	W02 A student knows Fundamentals of Statistical Physics	K_W01 – K_W05
	W03 A student knows Canonical ensemble and its applications	
	W04 A student knows description of Quantum Gases and Specific heat of solids	
	W05 A student knows description of BlackBody Radiation and Phase Transitions	

	Learning effects of the course	Relation of the learning effects to the specialization
	U01 A student applies three thermodynamics laws in description of physical systems and is able to describe Ideal Gas, its energy and equation of state; can use the Maxwell Distribution, van der Waals interactions	
	UO2 A student is able to formulate concept of Microcanonical Ensemble , Canonical Ensemble, Chemical Potential, Grand Canonical Ensemble in description of real physical systems.	
	U03 A student is able to calculate Boltzmann distribution for Canonical Ensemble (systems with discrete energy spectrum, Schootky anomaly and over quasi atomic states in 3d/4f ions)	K_U01 - K_U05
Skills	U04 A student is able to describe electron gas in metal, its characteristics and properties (Density of States, Fermi-Dirac Distribution and Fermi Gas); can use in practice the formalism of the Debye Model of Vibrations in a Solid, Bose-Einstein Distribution and Bose-Einstein Condensation,	
	U05 A student is able to describe bosons (phonons) in a real solid (Bose-Einstein Distribution) using concept of oscillators with derivation of energy spectrum of the quantum oscillator; can use in practice the formalism of the Einstein and Debye Model of Vibrations in a Solid for description of the specific heat of solids.	
	U06 A student can study properties of the blackbody radiation as resulting from gas of photons.	
	UO7 A student can describe theory of the phase transitions (phase diagram and evaporation of water; magnetic transition,)	

	Learning effects of the course	Relation of the learning effects to the specialization
	K01 . A student has the creativity and the ability to conceptual thinking.	
Social skills	K02 A student is able to present and justify the personal point of view.	K_K01 - K_K05
	KO3 A student is able to use the aquired knowledge and skills for the communication with the scientific community.	
	K04 A student is aimed to expand personal knowledge and skills.	
	K05 A student has the legal erudition.	

Course organization:

Form of classes	Lecture (W)	Group-exercises							
		A (large group)	K (small group)	L (Lab)	S (Seminar)	P (Project)	E (Exam)		
Contact hours	30		30				1		
Semester	1								
Language	English								

Teaching methods:

The course consists of open for discussion and questions lectures and classes. In-class exercises are designed to probe knowledge with emphasis on how well students have understood the underlying topics of the course. The lecture will be completed with a large number of practical examples of use of different statistical distribution functions to real physical systems.

Assessment methods:

	E – learning	Didactic games	Classes in schools	Field classes	Laboratory tasks	Individual project	Group project	Discussion participation	Student's presentation	Written assignment (essay)		Written exam	Other
W01								x	x		х		
W02								x	x		x		
W03								x	x		x		
W04								x	x		x		
U01						x	x	x	x		х		
U02						x	x	x	x		х		
U03						x	x	x	x		х		
U04						x	x	x	x		х		
K01							x	x	x		x		
K02							x	x	x		х		
K03							x	x	x		х		
K04							x	x	x		х	x	
K05							x	x			х	х	

Assessment criteria:

Grades	The grading scale will be as follows:
	90 – 100 % - A including A- excellent (eq. in Ukraine:відмінно (very good))
	82-89 % : B including B - very good (eq. in Ukraine: добре (good))
	74-81 %: C including C - good (eq. in Ukraine: добре (good))
	64–73 %: D including D – satisfactory (eq. in Ukraine: задовільно (satisfactory))
	60-63 %: E including E - acceptable (eq. in Ukraine: задовільно (satisfactory))
	60-63 %: E including E – acceptable (eq. in Ukraine: задовляно (satisfactory))

	and 1/1
 A. A student knows all terms and concepts mentioned in W1-W5, U1- U5 K5. A student can work without any assistances, his/her knowledge's are and easily applied to decision of specific problem. B. A student knows all terms and concepts mentioned in W1-W5, U1- U5 K5, yet needs a little help when decision of specific problem. C. A student knows all terms and concepts mentioned in W1-W5, U1- U5 K5, however needs a help when decision of specific problem. D. A student knows the most of terms and concepts mentioned in W1-W5, and K1-K5 and has difficulty in decision of specific problem. E. A student knows only several terms and concepts mentioned in W1-W5, and K1-K5 and can solve only a simple problem. F. A student does not know most of terms and concepts mentioned in W1-W5, and K1-K5 and can solve only a simple problem. 	and K1- and K1- and K1- U1- U5 U1- U5 W1-W5,

Course content (topics list):

Topics	1. Classical Thermodynamics: Temperature and the Zeroth Law; The First Law; Heat and temperature - history; Heat balance; Calculations of different
	examples;
	2. The Second Law - the entropy increases; Carnot Cycles; Entropy; calculations of the entropy change during the solidization and evaporation of water; Maxwell
	Relations; The Third Law.
	3. Classical Gases: Equation of state for the ideal gas; kinetic theory; pressure from statistical mechanics: Maxwell Distribution of velocities:
	4 History of the kinetic theory: real gases and interactions: van der Waals
	Equation of State; Classical Partition Functions; Equipartition;
	5. Fundamentals of Statistical Physics: Subject of Stat. Phys.; Concepts of the
	statistical physics - Stat. Phys as consistent mathematical theory for description
	of great-number particle systems and of phenomological thermodynamical laws;
	Calculations of the particle density of different physical systems and the
	degeneration temperature; Appearance of quantum effects;
	6. Microcanonical ensemble and calculated examples with the use of
	combinatorical methods; Microstates and macrostate; Entropy and the Second
	Law; absolute temperature; negative temperature in lasers; Mathematical
	methods of statistical physics - Stirling's formula, Lagrange multipliers;
	Characteristics of the equilibrium state; Energy Fluctuations.
	7. Canonical ensemble and its applications: Boltzmann distribution and
	partition function Z; Schottky anomaly; calculated examples on occupancy over
	discrete energy states at different temperatures; Discussion of physical systems
	with discrete states - open 4f (lanthanides) and 3d transition-metal many-
	electron lons; Maxwell Distribution - revisited (exponent).
	8. Quasi-atomic states of trivalent rare-earth lons; two Hund's rules; effect of
	7 the occupancy energy free energy entropy: Two-State Spin System
	9 Quantum Gases: Electron gas in conner metal: Calculations of its
	characteristics - density wave vector. Fermi energy Density of States
	10 Fermi-Dirac Distribution: White Dwarfs: Pauli Paramagnetism: Fermions and
	bosons. Bose-Finstein Distribution and Bose-Finstein Condensation.
	11. Specific heat of solids: Classical and Quantum oscillator: Calculated from OM
	allowed energy states: phonons. Einstein and Debye Model of Vibrations in a
	Solid; Gas of photons; Blackbody Radiation; Planck distribution; Wien and
	Stefan-Boltzmann radiation law.
	12. Phase Transitions: Water and its characteristics, phase diagram, anomalous
	properties of water; van der Waals equation Revisited; Phase Equilibrium;
	Maxwell Construction;

13. Grand Canonical Ensemble, Chemical Potential; Clausius-Clap	peyron Equation;
Critical Point; Ising Model; Mean Field Theory; Critical Exponents	s; Landau Theory
for second-order phase transition (magnetic transition).	
14. Summary - Statistical physics provides very consistent theore	etical
explanations for observed thermodynamical properties; Spontan	neous breaking
of symmetry as realization of the Third thermodynamic law in Na	ature.

Literature:

Compulsory reading	D. Tong: Lectures on Statistical Physics (Berkeley, pdf in the Internet) K. Huang : Introduction to Statistical Physics
Recommended reading	A. I. Anselm: Podstawy fizyki statystycznej I termodynamiki, po rosyjsku: Osnowy statisticzeskiej fizike L. D. Landau, J. M. Lifshitz: Statistical Physics

Estimation of the total working time of students:

Contact hours	Lectures	30
	Classes in small group	30
	Other (consultation, meetings)	10
Students' work hours (without the lecturer)	Reading books and preparation for the lectures	10
	Preparation to the seminar	10
	Preparation of an individual presentation	10
	Preparation to the exam	25
Total works' hours		100
ECTS credits		5